

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	dtlibs 0.5.0pre documentation

Welcome to the documentation for dtlibs

dtlibs is a Python package designed to support rapid development
of desktop applications using PyQt4. It consists of an assortment of
modules which can be used together to quickly produce a desktop
application with toolbars, menus and undo/redo functionality.

Package Contents

	dtlibs.core

	Provides some general core functions. This module can be loosely compared
with the python builtins.

	dtlibs.xcollections

	Provides a few container objects. This is comparable to the python
collections [http://docs.python.org/3.2/library/collections.html#module-collections] module

	dtlibs.xitertools

	Iterators extending the capabilities of itertools [http://docs.python.org/3.2/library/itertools.html#module-itertools].

	dtlibs.xos

	Path related functions. This extends the capabilities of os [http://docs.python.org/3.2/library/os.html#module-os],
os.path [http://docs.python.org/3.2/library/os.path.html#module-os.path] and shutil [http://docs.python.org/3.2/library/shutil.html#module-shutil]

	dtlibs.dev

	Some development utilities such as a graphical profiler.

Download and Install

The latest version of dtlibs can be downloaded from
http://bitbucket.org/aquavitae/dtlibs/downloads and
requires Python 3.3 [http://www.python.org] to run.

Table of Contents

	Core tools
	Functions

	Metaclasses

	Decorators & Function Tools

	Development tools
	Members

	Collections

	Itertools

	File system tools

Indices and tables

	Module Index

	Index

	Search Page

 Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dtlibs 0.5.0pre documentation

dtlibs.core

This module contains an assortment of useful functions and classes and can
be seen as an extension to the python builtin functions.

Functions

	
dtlibs.core.true(*args, **kwargs)

	Always returns True [http://docs.python.org/3.2/library/constants.html#True], regardless of input. This is useful in functions
which require a callable (e.g. filter [http://docs.python.org/3.2/library/functions.html#filter]) and is the same as
lambda *args, **kwargs: True, but reads cleaner.

	
dtlibs.core.false(*args, **kwargs)

	Always returns False [http://docs.python.org/3.2/library/constants.html#False], regardless of input. This is useful in functions
which require a callable (e.g. filter [http://docs.python.org/3.2/library/functions.html#filter]) and is the same as
lambda *args, **kwargs: False, but reads cleaner.

	
dtlibs.core.none(*args, **kwargs)

	Always returns None [http://docs.python.org/3.2/library/constants.html#None], regardless of input. This is useful in functions
which require a callable (e.g. filter [http://docs.python.org/3.2/library/functions.html#filter]) and is the same as
lambda *args, **kwargs: None, but reads cleaner.

	
dtlibs.core.isnumeric(value)

	Return true if value can be converted to any number type, e.g.:

>>> isnumeric('-3e2+4j')
True
>>> isnumeric('string')
False

	
dtlibs.core.iscallable(value)

	Return True if value has a __call__ member. This includes functions,
methods, lambdas, etc.

	
dtlibs.core.float2(s[, default=0.0])

	Convert any value to a float, or return default if the conversion fails.

	Parameters:	
	s – Value to convert to a float.

	default – This will be returned if s could not be converted.

default may be anything, it does not have to be a float. E.g.:

>>> print(float2('not a number', None))
None

	
dtlibs.core.int2(s[, default=0])

	Convert any value to an int, or return default if the conversion fails.

	Parameters:	
	s – Value to convert to an int.

	default – This will be returned if s could not be converted.

default may be anything, it does not have to be an int. E.g.:

>>> print(int2('not a number', None))
None

Metaclasses

	
dtlibs.core.singleton(*classes)

	Create a singleton-type metaclass which inherits from all metaclasses of
classes. Providing arguments to this is only necessary when the
singleton class inherits from a non-type base. For example, if
Object is a special class who’s metaclass is not type, then a
singleton subclass can be created thus:

	class SingletonSubclass(Object, metaclass=singleton(Object)):

	...

Subclasses will inherit this metaclass, so use with care at the top of
a hierarchy. However, subclasses are handled independently, so

>>> class A(metaclass=singleton()):
... pass
>>> class B(A):
... pass
>>> A() is B()
False

	
dtlibs.core.uniqueinstance(*classes[, call_init=False])

	Create a metaclass which only alows unique instances.

	Parameters:	
	classes – Classes which the new uniqueinstance metaclass should
inherit. They should all be of type type [http://docs.python.org/3.2/library/functions.html#type].

	call_init – Sets whether __init__ is called for instances
which have already been created.

	Returns:	A metaclass object.

The returned metaclass ensures that each instance of the class it
creates is unique, based on the initialisation parameters
(excluding self), which should be hashable.

The actual value used to compare may be set by using callable
annotations on the __init__ method. The callables
should take a single argument (the value passed through the parameter)
and return a hashable value which will be used as the key.

Variables arguments (e.g. *args or **kwargs) are handled as
a single argument. For example, the key for the argument *args:type
will always be tuple [http://docs.python.org/3.2/library/functions.html#tuple], and the key for the arguments described by
__init__(self, name, *args) and called as
__init__('spam', 'eggs', 42) would be ``('spam', ('eggs', 42))
An annotation should always be used with variable keyword arguments
since a dict [http://docs.python.org/3.2/library/stdtypes.html#dict] is not hashable.

Here is a simple example:

>>> class A(metaclass=uniqueinstance()):
... def __init__(self, id, other_arg:type):
... pass
>>> A(1, 2) is A(1, 3)
True
>>> A(1, 2) is A('not 1', 2)
False
>>> A(1, 2) is A(1, 'other arg')
False

Decorators & Function Tools

	
@dtlibs.core.deprecated(version, msg)

	A decorator which displays a deprecated warning every call of a callable.

This decorator accepts string arguments as the version and message, and
returns the callable with its docstring updated to include a
deprecated message. It should not be used on a class since it will
result in incorrect name binding, meaning that isinstance checks will
fail. Instead, use it on the class’ __init__ method.

For example:

>>> @deprecated('1.3', 'use a lumberjack instead')
... def barber(count):
... "I'm a barber"
... return count
>>> barber(4)
4
>>> help(barber)
Help of function barber

barber(*args, **kwargs)
 .. deprecated:: 1.3
 use a lumberjack instead

 I'm a barber

	
@dtlibs.core.info(**kwargs)

	This decorator creates an __info__ property to a function,
and stores all keyword arguments passed into it. For example

>>> @info(internal_data='Spam', more_data=['spam', 'eggs'])
... def spam_function(spam_count):
... print(spam_count)
>>> spam_function.__info__
{'internal_data': 'Spam', 'more_data': ['spam', 'eggs']}

This has no effect on the function itself, it is merely a way to
associate data with a function definition.

	
dtlibs.core.hasinfo(obj[, name=None])

	Return True [http://docs.python.org/3.2/library/constants.html#True] if obj has name in its __info__ dict.

If name is None, then True [http://docs.python.org/3.2/library/constants.html#True] if returned if object has an __info__
dict. In either case, if object does not have an __info__ dict,
False [http://docs.python.org/3.2/library/constants.html#False] is returned.

Note

This (and the related getinfo and setinfo) can be used on any
objects, not just functions. However, since the info is stored
in the __info__ attribute of the object, use with objects which
already make use of this name could cause expected behaviour.

	
dtlibs.core.setinfo(obj[, **kwargs])

	Set info on a function using info().

This is the similar to obj = info(**kwargs)(obj), except that it
updates __info__ if it already exists.

	
dtlibs.core.getinfo(obj, name)

	Get the info set on a function (e.g. by info).

This is the same as obj.__info__[name]. If this does not exist,
an exception is raised.

 Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dtlibs 0.5.0pre documentation

dtlibs.dev

This module contains some development tools, incuding a graphical profiler and
a timer.

Members

	
class dtlibs.dev.profile([filename=None])

	Profile a function, to observer its performance.

This provides a decorator interface to cProfile [http://docs.python.org/3.2/library/profile.html#module-cProfile]. It does
not add any functionality, but rather makes it easier to quickly
profile an existing function during testing without needing a large
amount of boilerplate.

The simplest way of using this is:

@profile()
def long_spam_song(spam):
 for s in spam:
 sing_spam_song(s)

This is similar to calling:

def long_spam_song(spam):
 def run(spam):
 for s in spam:
 sing_spam_song(s)
 cProfile.run('run()', sort='calls')

A more complex usage is:

prof = profile('long_spam_song.profile')
prof.sort_stats('time').print_callers(10)
@prof
def long_spam_song(spam):
 for s in spam:
 sing_spam_song(s)

The argument to profile is the name of the file to write profile
information to (see the cProfile [http://docs.python.org/3.2/library/profile.html#module-cProfile] documentation for more detail). The
additional methods called on this are the same as those provided by
pstats.Stats [http://docs.python.org/3.2/library/profile.html#pstats.Stats]. If no additional methods are used,
.sort_stats('calls').print_stats(10) is applied. Note that if
any method is used, one of the print methods must also be used to
display the results.

profile can also be used as a context manager:

	with profile(‘spam_song’):

	sing_spam_song()

	
class dtlibs.dev.Theme

	A Colour theme to use in graphs.

	Parameters:	
	bgcolor – Global background colour (default is white)

	mincolor – Minimum node colour (default is black)

	maxcolor – Maximum node colour (default is white)

	fontname – Fontname for text (default is ‘Arial’)

	minfontsize – Minimum font size (default is 10)

	maxfontsize – Maximum font size (default is 10)

	minpenwidth – Minimum pen width for links (default is 0.5)

	maxpenwidth – Maximum pen with for links (default is 4.0)

	gamma – Gamma correction (default is 2.2)

	skew – Skew the colour curve (Default is 1.0)

Colours are specified as RGB tuples.

The following themes are predefined.

	
dtlibs.dev.temp_theme

	A colour theme ranging from red to blue.

	
dtlibs.dev.pink_theme

	A pink colour theme.

	
dtlibs.dev.gray_theme

	A gray colour theme

	
dtlibs.dev.mono_theme

	A black and white colour theme

	
graph(filename, [fmt='pdf', nodethres=0.5, edgethres=0.1,

	
theme=`temp_theme`, strip=False, wrap=False])

	This is similar to profile, but shows a graph instead.

	Parameters:	
	filename – The name of the file (including extension) to write.

	fmt – The file format as used by dot’s ‘-T’ parameter

	nodethres – Eliminate nodes below this threshold fraction

	edgethres – Eliminate edges below this threshold fraction

	theme – Colour theme (see Theme)

	strip – Strip mangling from C++ function names

	wrap – Wrap function names

This requires <graphviz http://www.graphviz.org/>_ and
<gprof2dot http://code.google.com/p/jrfonseca/wiki/Gprof2Dot>_.

 Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dtlibs 0.5.0pre documentation

dtlibs.xcollections

	
dtlibs.xcollections.nameddict(name, *keys, **types)

	Factory for DefinedDict.

A new DefinedDict subclass is created with keys. The key types
may optionally be specified using types. An example is:

>>> Dict = nameddict('Dict', 'key1 key2 key3', key1=str, key2=list)
>>> d = Dict()
>>> d.key1 = 'a string'
>>> d.key2 = ['a', 'list']
>>> d.key3 = 'anything'

	
dtlibs.xcollections.typedlist(name, type_)

	Factory function for specific TypedList object.

While TypeLists can be created directly, this function constructs
a new TypeList subclass for a specific type, allowing it to be reused.

>>> StringList = typedlist('StringList', str)
>>> names = StringList()
>>> addresses = StringList()
>>> names.append('Mike')
>>> names.append(34)
Traceback (most recent call last):
 ...
TypeError: 34 is not type <class 'str'>
Traceback (most recent call last):
 ...
TypeError: 34 is not type <class 'str'>

	
class dtlibs.xcollections.TypedList(type_, initial=None)

	A list that contains a specific type of object.

	
appendnew(*args, **kwargs)

	Create a new instance the list type and append it.

Since the type of data stored by the list is known, a new object
can be added to it by simply specifying the constructor arguments.
The return value is the newly created object.

For example:

>>> import datetime
>>> l = TypedList(datetime.date)
>>> obj = l.appendnew(2001, 1, 1)
>>> print(obj)
2001-01-01

is the same as

>>> import datetime
>>> l = TypedList(datetime.date)
>>> obj = datetime.date(2001, 1, 1)
>>> l.append(obj)

	
insert(index, value)

	

	
type()

	

	
class dtlibs.xcollections.SelectList(iterable=None)

	A list of which some items are selected.

The example below illustrates basic usage of this class.

>>> l = SelectList([1, 2, 3, 4, 5])
>>> l.select(3)
[1, 2, <3>, 4, 5]
>>> l.selection
(3,)
>>> l.select(6)
Traceback (most recent call last):
 ...
ValueError: 6
>>> l
[1, 2, <3>, 4, 5]
>>> l.clear()
>>> l.selection
()
>>> l.indexselect(0, 2)
[<1>, 2, <3>, 4, 5]
>>> l.indexselection
(0, 2)
>>> l.select(5, 3)
[<1>, 2, <3>, 4, <5>]
>>> l.selection
(1, 3, 5)
Traceback (most recent call last):
 ...
ValueError: 6

The following rules govern the processing of the selections:

	If options contains duplicates, the first matching value is selected
when using select

>>> l = SelectList([1, 2, 1])
>>> l.select(1)
[<1>, 2, 1]

However, it is possible to explicitly select a value using
indexselect().

>>> l = SelectList([1, 2, 1])
>>> l.indexselect(2)
[1, 2, <1>]

	The selection lists are unordered.

>>> l = SelectList([1, 2, 3, 4, 5])
>>> _ = l.select(3)
>>> _ = l.select(1)
>>> l.selection
(1, 3)

	If a selected value is changed in the SelectList, it is removed
from the selection.

>>> l = SelectList([1, 2, 3])
>>> l.select(2)
[1, <2>, 3]
>>> l[1] = 4
>>> l
[1, 4, 3]

	
clear()

	Clear the selection.

	
indexselect(*indexes)

	Select by indexes and return the SelectList.

	
indexselection

	Return a tuple of selected indexes.

	
indexunselect(*indexes)

	Remove values by index and return the SelectList.

>>> l = SelectList('penguin')
>>> l.select('p', 'g')
[<'p'>, 'e', 'n', <'g'>, 'u', 'i', 'n']
>>> l.indexunselect(3)
[<'p'>, 'e', 'n', 'g', 'u', 'i', 'n']
>>> l.indexunselect(4)
Traceback (most recent call last):
 ...
IndexError: Item at position '4' is not selected
Traceback (most recent call last):
 ...
IndexError: Item at position '4' is not selected

	
insert(index, value)

	

	
select(*values)

	Select a group of values and return the SelectList.

>>> l = SelectList('abcdefg')
>>> l.select('a', 'd', 'f')
[<'a'>, 'b', 'c', <'d'>, 'e', <'f'>, 'g']

	
selection

	Return a tuple of the selected values.

	
unselect(*values)

	Remove values from the selection list and return the SelectList.

If the selection contains duplicate values, then the first found is
removed. If no matching values are found, then an exception is raised.

>>> l = SelectList('penguin')
>>> l.indexselect(2, 6)
['p', 'e', <'n'>, 'g', 'u', 'i', <'n'>]
>>> l.unselect('n')
['p', 'e', 'n', 'g', 'u', 'i', <'n'>]
>>> l.unselect('p')
Traceback (most recent call last):
 ...
ValueError: 'p' is not selected
Traceback (most recent call last):
 ...
ValueError: 'p' is not selected

	
class dtlibs.xcollections.FilterList(key, parent)

	A filtered wrapper around a list.

This class wraps around a list, but filters all output. This is
similar to using the built-in filter [http://docs.python.org/3.2/library/functions.html#filter] function, but allows
changes through it to the underlying list. This is not as fast
as filter, though, so should only be used when modifications are
needed.

Initialisation follows the same format as filter [http://docs.python.org/3.2/library/functions.html#filter]:

>>> key = lambda n: n in [1, 3, 5, 7, 9]
>>> parent = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> f = FilterList(key, parent)

Iterating over the list returns only those values for which key returns
True.

>>> [i for i in f]
[1, 3, 5, 7, 9]

Similarly, item indexes work according to this.

>>> f[3]
7

Assignments, insertions and deletions are supported, and affect the
parent.

>>> f[3] = 1
>>> f.insert(4, 3)
>>> del f[1]
>>> parent
[1, 2, 4, 5, 6, 1, 8, 3, 9, 10]

Note that slices can only be used when querying. They cannot be used
for assignments of deletions.

	
insert(index, value)

	

	
class dtlibs.xcollections.StrictList(accepts, initial=None)

	A list that is fussy about what it contains.

A StrictList may only contain object for which accepts(obj)
is True.

>>> largenumbers = StrictList(lambda n: n > 1000, range(2000, 2005))
>>> print(list(largenumbers))
[2000, 2001, 2002, 2003, 2004]
>>> largenumbers.append(3)
Traceback (most recent call last):
 ...
ValueError: 3
Traceback (most recent call last):
 ...
ValueError: 3

	
accepts(value)

	Return False if value is not accepted.

	
insert(index, value)

	

	
class dtlibs.xcollections.MultiDict(*args, **kwargs)

	A dictionary which allows multiple keys.

	
get(key, default=<class 'dtlibs.xcollections._multidict._Unused'>)

	

	
items(key=<class 'dtlibs.xcollections._multidict._Unused'>)

	

	
keys()

	

	
popitem(pair=None)

	

	
values(key=<class 'dtlibs.xcollections._multidict._Unused'>)

	

 Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dtlibs 0.5.0pre documentation

dtlibs.xitertools

	
dtlibs.xitertools.compact(it)

	Iterate through a sequence, skipping duplicates.

>>> seq = 'MINIMUM'
>>> print([i for i in compact(seq)])
['M', 'I', 'N', 'U']

	
dtlibs.xitertools.group(iterable, size, test)

	Group items in iterable in tuples of size if test is True [http://docs.python.org/3.2/library/constants.html#True].

Each consecutive slice of size items of iterable are tested by calling
test(items). It test returns true, then they are grouped in a tuple.

>>> def ends_with_list(items):
... return isinstance(items[1], list)
>>> [i for i in group([1, [2, 3], 4, 5, [6, 7, 8]], 2, ends_with_list)]
[(1, [2, 3]), 4, (5, [6, 7, 8])]

 Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	dtlibs 0.5.0pre documentation

dtlibs.xos

A collection of functions which extend os [http://docs.python.org/3.2/library/os.html#module-os], os.path [http://docs.python.org/3.2/library/os.path.html#module-os.path] and shutil [http://docs.python.org/3.2/library/shutil.html#module-shutil].

	
class dtlibs.xos.Filename(name, relative=None)

	Intelligently handle a file path.

The filename is broken down into basepath/relpath/basename.extension.
basepath and relpath always end in a trailing slash, and extension,
if it exists starts with a .. This means that the the full path
is always basepath + relpath + basename + extension.

If relpath or extension are not used, then it they are an empty
string.

In addition, the following properties are supported:

	Property
	Return value

	fullname
	basepath/relpath/basename.extension

	relname
	relpath/basename.extension

	path
	basepath/relpath

	filename
	basename.extension

The extension is interpreted to be at the first .. All paths
returned are normalised using normpath().

Examples:

>>> path = Filename('/tmp/folder/and/file.ext', '/tmp/folder')
>>> path.basepath
'/tmp/folder/'
>>> path.relname
'and/file.ext'
>>> path.fullname
'/tmp/folder/and/file.ext'
>>> path.path
'/tmp/folder/and/'
>>> path.filename
'file.ext'
>>> Filename('/path/file').extension
''
>>> Filename('/path/file').fullname
'/path/file'

	
basename

	

	
basepath

	

	
exists()

	

	
extension

	

	
filename

	

	
fullname

	

	
path

	

	
relname

	

	
relpath

	

	
dtlibs.xos.create(file, mode=None)

	Similar to builtin open() [http://docs.python.org/3.2/library/functions.html#open], but raise an exception if file exists.

The mode can be specified as for open() [http://docs.python.org/3.2/library/functions.html#open], but cannot contain
read, write, update or append modes, since the file created is
always opened in write mode.

	
dtlibs.xos.getfiles(path)

	Return a generator of Filename objects for each file in path.

Each Filename object returned represents a single file in a tree relative
to path. Directories are ignored.

	
dtlibs.xos.hasroot(path, root)

	Return true if path has the root specified.

>>> hasroot('/usr/share/doc/python32', '/usr/share')
True
>>> hasroot('../folder', '../')
True
>>> hasroot('/usr/share', '/usr/sh')
False

	
dtlibs.xos.iswindowspath(path)

	Return true if path is recognised as having a drive letter.

>>> iswindowspath('c:\windows')
True
>>> iswindowspath('c:/windows')
True
>>> iswindowspath('/usr/share')
False

	
dtlibs.xos.levels(path, root=None)

	Return the number of levels in the path relative to root.

The following conditions are fulfilled:

	If root is missing, then path is not relative to anything (even if it
is a relative path), and levels is always a number with the exception
of cases defined by 5. below.

	If root is absolute and path is relative, then paths is assumed
to be relative to root. In this case levels(path, root) gives the
same result as levels(path, None).

	If root is relative then path must also be relative, or None is returned.

	If root and path are both relative then they are assume to be relative
to the same position. i.e. levels('share/doc', 'lib') is the same
as levels('/share/doc', '/lib').

	If the final path, relative to root, has negative levels
(e.g. ‘../share’), then None will be returned.

	On windows, the drive letter is used in the comparison, but is not
counted as a level.

	
dtlibs.xos.normpath(path)

	Similar to os.path.normpath() [http://docs.python.org/3.2/library/os.path.html#os.path.normpath], but not dependant on OS.

This always returns the same string, regardless of operating system.
Note that this can result in an incorrect path on unusual systems.

For example, the following should work on any system:

>>> normpath(r'\usr/local')
'/usr/local'
>>> normpath(r'c:\windows\system')
'c:/windows/system'

	
dtlibs.xos.remove_empty(root)

	Remove all empty directories in root, including subfolders.

	
class dtlibs.xos.safewriter(name, text=False, backup=None)

	Provide a safe environment for writing files.

safewriter is a context manager which acts similar to the file
object returned by open() [http://docs.python.org/3.2/library/functions.html#open]. However, it works by writing to a
temporary file first, so that data is not lost if for any reason
the write fails.

safewriter is typically instantiated as a context manager:

with safewriter('file') as f:
 f.write(b'spam')

If an exception occurs before the context manager exits, the
temporary file is removed and the original data left untouched. If
the write is a success, the temporary file is renamed to the target
filename, after optionally backing the target up.

This is all done as safely as possible, given the provisions of
tempfile.mkstemp() [http://docs.python.org/3.2/library/tempfile.html#tempfile.mkstemp] and os.rename() [http://docs.python.org/3.2/library/os.html#os.rename]. Under normal
circumstances, the only possibility of a race condition is that
a new file with the same name as the target could be created after
the target is removed and before the temporary file is renamed.
This will only be possible on certain platforms where
os.rename() [http://docs.python.org/3.2/library/os.html#os.rename] does not automatically overwrite.

	
abort()

	

	
close()

	

	
name

	Return the name of the file to be written to.

This allows for writing to files using custom methods requiring
a name, e.g. as a sqlite database:

with safewriter('database.sqlite') as f:
 conn = sqlite.connect(f.name)
 ... # write stuff to database
 conn.close()

	
dtlibs.xos.walkstats(root)

	Iterate over the dirs in path and yield (base, stats) tuples.

Each stats object is itself a dict of {path: stats} within
root. path is the relative path, but is not recursive. i.e. the first
iteration of walkstats('/usr') would include, for example,
‘/usr/share’ but not ‘/usr/share/doc’

 Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	dtlibs 0.5.0pre documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 dtlibs	

 	
 	
 dtlibs.core	

 	
 	
 dtlibs.dev	

 	
 	
 dtlibs.qt	

 	
 	
 dtlibs.xcollections	

 	
 	
 dtlibs.xitertools	

 	
 	
 dtlibs.xos	

 Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	dtlibs 0.5.0pre documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	abort() (dtlibs.xos.safewriter method)

 	aboutToReset() (dtlibs.qt.QXDropdownFilterModel method)

 	accepts() (dtlibs.xcollections.StrictList method)

 	addRecord() (dtlibs.qt.QXTabularModel method)

 	

 	addRecords() (dtlibs.qt.QXTabularModel method)

 	addSimpleDockWidget() (dtlibs.qt.QXDocumentWindow method)

 	addStateObject() (dtlibs.qt.QXApplication method)

 	appendnew() (dtlibs.xcollections.TypedList method)

B

 	

 	basename (dtlibs.xos.Filename attribute)

 	

 	basepath (dtlibs.xos.Filename attribute)

C

 	

 	clear() (dtlibs.qt.QXAppendProxyModel method)

 	

 	(dtlibs.xcollections.SelectList method)

 	close() (dtlibs.qt.QXDocument method)

 	

 	(dtlibs.xos.safewriter method)

 	closeDocument() (dtlibs.qt.QXDocument method)

 	closeGUI() (dtlibs.qt.QXDocumentWindow method)

 	column() (dtlibs.qt.QXTabularModel method)

 	

 	compact() (in module dtlibs.xitertools)

 	compactSeparators() (in module dtlibs.qt)

 	copy() (dtlibs.qt.QXTableView method)

 	copyRole() (dtlibs.qt.QXTableView method)

 	create() (in module dtlibs.xos)

D

 	

 	deleteRow() (dtlibs.qt.QXTabularModel method)

 	deprecated() (in module dtlibs.core)

 	displayFormat() (dtlibs.qt.QXField method)

 	document() (dtlibs.qt.QXDocumentWindow method)

 	dtlibs.core (module)

 	dtlibs.dev (module)

 	

 	dtlibs.qt (module), [1], [2], [3], [4]

 	dtlibs.qt.hideproxy() (in module dtlibs.qt)

 	dtlibs.xcollections (module)

 	dtlibs.xitertools (module)

 	dtlibs.xos (module)

E

 	

 	editFormat() (dtlibs.qt.QXField method)

 	emitValueChanged() (dtlibs.qt.QXStdWidgetABC method)

 	error() (in module dtlibs.qt)

 	

 	exists() (dtlibs.xos.Filename method)

 	ext() (dtlibs.qt.QXDocument method)

 	extension (dtlibs.xos.Filename attribute)

F

 	

 	false() (in module dtlibs.core)

 	field() (dtlibs.qt.QXTabularModel method)

 	fieldnames() (dtlibs.qt.QXTabularModel method)

 	fields() (dtlibs.qt.QXTabularModel method)

 	Filename (class in dtlibs.xos)

 	filename (dtlibs.xos.Filename attribute)

 	

 	FilterList (class in dtlibs.xcollections)

 	flags() (dtlibs.qt.QXAppendProxyModel method)

 	float2() (in module dtlibs.core)

 	fullname (dtlibs.xos.Filename attribute)

 	fullName() (dtlibs.qt.QXDocument method)

G

 	

 	get() (dtlibs.xcollections.MultiDict method)

 	getfiles() (in module dtlibs.xos)

 	getinfo() (in module dtlibs.core)

 	getOption() (in module dtlibs.qt)

 	getText() (in module dtlibs.qt)

 	

 	getValue() (dtlibs.qt.QXStdWidgetABC method)

 	getWidget() (dtlibs.qt.QXDateTimeDelegate method)

 	

 	(dtlibs.qt.QXFloatDelegate method)

 	(dtlibs.qt.QXListDelegate method)

 	(dtlibs.qt.QXTypedDelegate method)

 	gray_theme (in module dtlibs.dev)

 	group() (in module dtlibs.xitertools)

 	guessWidget() (in module dtlibs.qt)

H

 	

 	hasinfo() (in module dtlibs.core)

 	

 	hasroot() (in module dtlibs.xos)

I

 	

 	indexselect() (dtlibs.xcollections.SelectList method)

 	indexselection (dtlibs.xcollections.SelectList attribute)

 	indexunselect() (dtlibs.xcollections.SelectList method)

 	info() (in module dtlibs.core)

 	insert() (dtlibs.xcollections.FilterList method)

 	

 	(dtlibs.xcollections.SelectList method)

 	(dtlibs.xcollections.StrictList method)

 	(dtlibs.xcollections.TypedList method)

 	int2() (in module dtlibs.core)

 	

 	iscallable() (in module dtlibs.core)

 	isnumeric() (in module dtlibs.core)

 	isOpen() (dtlibs.qt.QXDocument method)

 	iswindowspath() (in module dtlibs.xos)

 	items() (dtlibs.xcollections.MultiDict method)

K

 	

 	keys() (dtlibs.xcollections.MultiDict method)

L

 	

 	levels() (in module dtlibs.xos)

M

 	

 	mainWindow() (dtlibs.qt.QXApplication method)

 	menuToToolBar() (in module dtlibs.qt)

 	message() (in module dtlibs.qt)

 	

 	mono_theme (in module dtlibs.dev)

 	MultiDict (class in dtlibs.xcollections)

N

 	

 	name (dtlibs.xos.safewriter attribute)

 	name() (dtlibs.qt.QXDocument method)

 	nameddict() (in module dtlibs.xcollections)

 	new() (dtlibs.qt.QXDocument method)

 	

 	newDocument() (dtlibs.qt.QXDocument method)

 	nextCell() (dtlibs.qt.QXTableView method)

 	none() (in module dtlibs.core)

 	normpath() (in module dtlibs.xos)

O

 	

 	open() (dtlibs.qt.QXDocument method)

 	openDocument() (dtlibs.qt.QXDocument method)

 	

 	openFilters() (dtlibs.qt.QXDocument method)

 	openGUI() (dtlibs.qt.QXDocumentWindow method)

P

 	

 	paste() (dtlibs.qt.QXTableView method)

 	pasteAll() (dtlibs.qt.QXTableView method)

 	pasteRole() (dtlibs.qt.QXTableView method)

 	pasteToSelection() (dtlibs.qt.QXTableView method)

 	path (dtlibs.xos.Filename attribute)

 	path() (dtlibs.qt.QXDocument method)

 	

 	pauseRowSignals() (dtlibs.qt.QXTabularModel method)

 	percentageBrush() (in module dtlibs.qt)

 	pink_theme (in module dtlibs.dev)

 	popitem() (dtlibs.xcollections.MultiDict method)

 	profile (class in dtlibs.dev)

Q

 	

 	qobject_singleton (in module dtlibs.qt)

 	question() (in module dtlibs.qt)

 	Qx (class in dtlibs.qt)

 	Qx.WidgetRole (in module dtlibs.qt)

 	QXActions (class in dtlibs.qt)

 	QXActions.getAction() (in module dtlibs.qt)

 	QXActions.group() (in module dtlibs.qt)

 	QXActions.menubar() (in module dtlibs.qt)

 	QXActions.toolbars() (in module dtlibs.qt)

 	QXAppendProxyModel (class in dtlibs.qt)

 	QXApplication (class in dtlibs.qt)

 	QXDateTimeDelegate (class in dtlibs.qt)

 	QXDocument (class in dtlibs.qt)

 	QXDocument.documentClosed (in module dtlibs.qt)

 	QXDocument.documentOpened (in module dtlibs.qt)

 	QXDocumentWindow (class in dtlibs.qt)

 	QXDropdownFilterModel (class in dtlibs.qt)

 	QXDropdownFilterModel.filterChanged (in module dtlibs.qt)

 	QXField (class in dtlibs.qt)

 	QXField.BottomCenter (in module dtlibs.qt)

 	QXField.BottomLeft (in module dtlibs.qt)

 	QXField.BottomRight (in module dtlibs.qt)

 	QXField.Center (in module dtlibs.qt)

 	

 	QXField.Left (in module dtlibs.qt)

 	QXField.Right (in module dtlibs.qt)

 	QXField.TopCenter (in module dtlibs.qt)

 	QXField.TopLeft (in module dtlibs.qt)

 	QXField.TopRight (in module dtlibs.qt)

 	QXFloatDelegate (class in dtlibs.qt)

 	QXListDelegate (class in dtlibs.qt)

 	QXSortFilterProxyModel (class in dtlibs.qt)

 	QXStdCheckBox (class in dtlibs.qt)

 	QXStdComboBox (class in dtlibs.qt)

 	QXStdDateEdit (class in dtlibs.qt)

 	QXStdDateTimeEdit (class in dtlibs.qt)

 	QXStdFloatEdit (class in dtlibs.qt)

 	QXStdIntEdit (class in dtlibs.qt)

 	QXStdOptionsBox (class in dtlibs.qt)

 	QXStdTextEdit (class in dtlibs.qt)

 	QXStdWidgetABC (class in dtlibs.qt)

 	QXStdWidgetABC.valueChanged (in module dtlibs.qt)

 	QXTableView (class in dtlibs.qt)

 	QXTableView.currentRowChanged (in module dtlibs.qt)

 	QXTabularModel (class in dtlibs.qt)

 	QXTypedDelegate (class in dtlibs.qt)

R

 	

 	record() (dtlibs.qt.QXTabularModel method)

 	recordFactory() (dtlibs.qt.QXAppendProxyModel method)

 	relname (dtlibs.xos.Filename attribute)

 	relpath (dtlibs.xos.Filename attribute)

 	remove_empty() (in module dtlibs.xos)

 	reset() (dtlibs.qt.QXDropdownFilterModel method)

 	

 	restoreGeometry() (dtlibs.qt.QXApplication method)

 	restoreState() (dtlibs.qt.QXApplication method)

 	

 	(dtlibs.qt.QXTableView method)

 	restoreStates() (dtlibs.qt.QXApplication method)

 	row() (dtlibs.qt.QXTabularModel method)

 	runApp() (in module dtlibs.qt)

S

 	

 	safewriter (class in dtlibs.xos)

 	save() (dtlibs.qt.QXDocument method)

 	saveAs() (dtlibs.qt.QXDocument method)

 	saveDocument() (dtlibs.qt.QXDocument method)

 	saveFilters() (dtlibs.qt.QXDocument method)

 	saveGeometry() (dtlibs.qt.QXApplication method)

 	saveState() (dtlibs.qt.QXApplication method)

 	

 	(dtlibs.qt.QXTableView method)

 	saveStates() (dtlibs.qt.QXApplication method)

 	select() (dtlibs.xcollections.SelectList method)

 	selectedState() (dtlibs.qt.QXDropdownFilterModel method)

 	selection (dtlibs.xcollections.SelectList attribute)

 	SelectList (class in dtlibs.xcollections)

 	setColumnWidth() (dtlibs.qt.QXTableView method)

 	setCopyRole() (dtlibs.qt.QXTableView method)

 	setDocument() (dtlibs.qt.QXDocumentWindow method)

 	setFields() (dtlibs.qt.QXTabularModel method)

 	setFilter() (dtlibs.qt.QXSortFilterProxyModel method)

 	

 	setinfo() (in module dtlibs.core)

 	setMainWindow() (dtlibs.qt.QXApplication method)

 	setOpenFilters() (dtlibs.qt.QXDocument method)

 	setPasteRole() (dtlibs.qt.QXTableView method)

 	setProxyModels() (dtlibs.qt.QXTableView method)

 	setRecordFactory() (dtlibs.qt.QXAppendProxyModel method)

 	setSaveFilters() (dtlibs.qt.QXDocument method)

 	settings() (dtlibs.qt.QXApplication method)

 	setUi() (in module dtlibs.qt)

 	setValue() (dtlibs.qt.QXStdWidgetABC method)

 	setValueGetter() (dtlibs.qt.QXTabularModel method)

 	singleton() (in module dtlibs.core)

 	sourceDataChanged() (dtlibs.qt.QXDropdownFilterModel method)

 	sourceItems() (dtlibs.qt.QXDropdownFilterModel method)

 	standardBrush() (in module dtlibs.qt)

 	StrictList (class in dtlibs.xcollections)

T

 	

 	tangoIcon() (in module dtlibs.qt)

 	temp_theme (in module dtlibs.dev)

 	textHeight() (in module dtlibs.qt)

 	textWidth() (in module dtlibs.qt)

 	Theme (class in dtlibs.dev)

 	

 	true() (in module dtlibs.core)

 	type() (dtlibs.xcollections.TypedList method)

 	TypedList (class in dtlibs.xcollections)

 	typedlist() (in module dtlibs.xcollections)

 	types() (dtlibs.qt.QXStdWidgetABC class method)

U

 	

 	uniqueinstance() (in module dtlibs.core)

 	

 	unselect() (dtlibs.xcollections.SelectList method)

V

 	

 	value() (dtlibs.qt.QXTabularModel method)

 	valueFormat() (dtlibs.qt.QXField method)

 	

 	valueGetter() (dtlibs.qt.QXTabularModel method)

 	values() (dtlibs.xcollections.MultiDict method)

W

 	

 	walkstats() (in module dtlibs.xos)

 Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/plus.png

_static/up.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		dtlibs 0.5.0pre documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

_static/comment-close.png

qt/index.html

 Navigation

 		
 index

 		
 modules |

 		dtlibs 0.5.0pre documentation »

dtlibs.qt

		Overview
		New frameworks

		New functions and classes

		Data and Namespaces

		Functions
		Dialog Functions

		General UI functions

		Application

		Utility Functions

		dtlibs.qt Classes
		QXActions

		QXAppendProxyModel

		QXApplication

		QXDateTimeDelegate

		QXDocument

		QXDocumentWindow

		QXDropdownFilterModel

		QXField

		QXFloatDelegate

		QXListDelegate

		QXSortFilterProxyModel

		QXStdCheckBox

		QXStdComboBox

		QXStdDateEdit

		QXStdDateTimeEdit

		QXStdFloatEdit

		QXStdIntEdit

		QXStdOptionsBox

		QXStdTextEdit

		QXStdWidgetABC

		QXTableView

		QXTabularModel

		QXTypedDelegate

 © Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/down-pressed.png

qt/classes.html

 Navigation

 		
 index

 		
 modules |

 		dtlibs 0.5.0pre documentation »

dtlibs.qt Classes

QXActions

		
class dtlibs.qt.QXActions(parent[, *args])

		Create a new actions group.

		Parameters:		
		parent – The parent widget of all created QActions.

		args – List of classes to scan for actions. If omitted, then
the parent is used.

		Seealso:		actions

		
getAction(self, name)

		Return an action by searching for name. The search is
case-insensitive and ignores all occurrences of ‘&’ and leading and
trailing whitespace.

		
group(self, *args)

		Group existing actions into menus. The arguments supplied defined
how the actions are grouped, An even number of arguments are
expected, in the form:

group('group1', [list-of-action-names], 'group2', ...)

The first of every pair of arguments is the name of the menu,
and the second is a list of named actions. The list
may contain similar group pairs, indicating nested menus, e.g.:

group('group', ['subgroup', [list-of-actions]])

If an item in the list evaluates to False, then a separator is
added. For example, each of the the following commands insert a
separator between ‘New’ and ‘Open’:

group('File', ['New', '', 'Open])
group('File', ['New', None, 'Open])
group('File', ['New', False, 'Open])

Action names are compared to the text property of the action.
Leading and trailing whitespace are stripped, any occurence of ‘&’
is removed and case is ignored. So 'New' and ' &new '
match.

		
menubar()

		Return a QMenuBar containing the grouped actions.

		
toolbars()

		Return a list of QToolbars containing the grouped actions.

QXAppendProxyModel

		
class dtlibs.qt.QXAppendProxyModel([recordFactory=None, model=None])

		This proxy model provides an interface to append rows.

		Parameters:		
		recordFactory – A callable which converts a dict into a record
as used by the source table model. Be default,
the dict is returned unchanged.

		model – The source model for the proxy model.

For the most part, data is mapped straight the source model. However,
this model always provides an additional empty row at the end which
can be used to enter new data. Every time the data is changed in
this row, the source model’s addRecord method is called with a single
argument, the return value of recordFactory.

The source model must supply a field method which returns a QXField
object for a column, and an addRecord method which accepts a record.
Records are created by recordFactory(), which can be set to any
function that will convert a dict into a new record object. If no
exceptions are raised while creating and adding the record, the
addition is assumed to be successful. ValueError exceptions should
be used to indicate failure and they will be silently ignored
(although an information message will be logged.) The source
model is not responsible for emitting rowsInserted and related signals.

		
recordFactory()

		Return the factory used to create new records.

		
setRecordFactory(value)

		Set the record factory.

		
clear([column=None])

		Clear pending data in column. If column is None, then clear everything.

		
flags(index)

		Return the source model’s flags for all but the last row. The
last row returns ItemIsEnabled and, for those columns which
are not readonly, ItemIsEditable.

QXApplication

		
class dtlibs.qt.QXApplication([args])

		A singleton subclass of QApplication.

Basic usage of this class is the same as for QApplication, but it also
supports a few extra features:

		If no arguments are specified in the constructor, sys.argv [http://docs.python.org/3.2/library/sys.html#sys.argv] is used.
This allows it to be initialised without arguments.

>>> app = QXApplication()

		It is a singleton, meaning that it only every has one instance.
Combines with the optional constructor arguments, this allows
the following sort of usage.

>>> app = QXApplication()
>>> app.setApplicationName('MyApp')
>>> QXApplication().applicationName()
'MyApp'
>>> QXApplication() is QXApplication()
True
>>> QXApplication() is app
True

		It recognises the main window for an application. This allows
global functions, such as message to use it as a parent.

>>> app = QXApplication()
>>> win = 'a widget'
>>> app.setMainWindow('a widget')
>>> app.mainWindow()
'a widget'

		It is automatically created when qt is imported, to ensure that
there is always a running application

		The application provides support for saving and restoring settings
through QSettings. QSettings requires that the organisation and
application names are set, so for convenience, the organisation is
set to ‘dtlibs’ by default. The first time QXApplication.settings
is called, a new instance of QSettings is created. A new
instance is also created whenever it is called with arguments.

		
mainWindow()

		Return the main window, or None [http://docs.python.org/3.2/library/constants.html#None] if it has not been set.

		
setMainWindow(value)

		Set the main window to value.

		
settings([organisation=None, application=None])

		Return a QSettings instance for this applications settings.

On the first call to this function, and every other call with
arguments, a new QSettings instance is created. If either
argument is None then the application properties
organisationName and applicationName are used.
If organisation and application are omitted or None and the
method has already been called, the previously created QSettings
instance is returned.

		
saveGeometry(window[, name])

		Save the geometry of window. name is the section name to save
the settings under. If it is omitted, the window’s
objectName property is used.

		
restoreGeometry(window[, name])

		Restore the geometry of window. name is the section name under
which the settings are saved. If it is omitted, the window’s
objectName property is used. If no settings have yet been
saved, this does nothing and returns False [http://docs.python.org/3.2/library/constants.html#False].

		
saveState(self, obj[, name])

		Save the state of obj by calling obj.saveState. name is the
section name under which to save the settings. If it is
omitted, the objects’s objectName property is used.

		
restoreState(self, obj[, name])

		Restore the state of obj by calling obj.restoreState. name
is the section name under which the settings are saved. If it is
omitted, the object’s objectName property is used. If no settings
have yet been saved, this does nothing and returns False [http://docs.python.org/3.2/library/constants.html#False].

		
addStateObject(self, obj[, name])

		Register an object as having a saveable state. If the object has
already been added, then the name is updated.

		
addStateObjects(self, objects):

		Register a dict of objects as having a saveable state.

		
saveStates()

		Save the state of all objects registered through addStateObject.

		
restoreStates()

		Restore the state of all objects registered through addStateObject.

QXDateTimeDelegate

		
class dtlibs.qt.QXDateTimeDelegate(parent[, fmt, usetime=False])

		A delegate for datetime [http://docs.python.org/3.2/library/datetime.html#module-datetime] values.

		Parameters:		
		fmt – A format string for display as used by
datetime.datetime.strftime [http://docs.python.org/3.2/library/datetime.html#datetime.datetime.strftime]. If it is omitted then
the system default is used.

		usetime – A boolean specifying whether the time is managed by the
delegate. If True [http://docs.python.org/3.2/library/constants.html#True], then the delegate uses
datetime.datetime [http://docs.python.org/3.2/library/datetime.html#datetime.datetime]. If false, it uses datetime.date [http://docs.python.org/3.2/library/datetime.html#datetime.date].

		
getWidget(parent, option, index)

		Return a QXStdDateEdit or QXStdDateTimeEdit depending whether
usetime is True [http://docs.python.org/3.2/library/constants.html#True].

QXDocument

		
class dtlibs.qt.QXDocument

		A class representing the state of a single document.

This framework provides methods for working with documents and files,
specifically dealing with operations such as opening and saving them.
The QXDocument class should be inherited to create a new type of
document, and newDocument(), openDocument(),
saveDocument() and closeDocument() reimplemented.

Acceptable file filters are stored using setSaveFilters() and
setOpenFilters, and are in the same format as used by
QFileDialog.filters, e.g.,
"Images (*.png *.xpm *.jpg);;Text files (*.txt);;XML files (*.xml)

The new, open, save, saveAs and close methods of this class
are defined with __info__ (see dtlibs.core.info), and are set up
to be used with QXActions.

		
documentOpened

		Signal emitted when a document is opened

		
documentClosed

		Signal emitted when a document is closed

		
saveFilters()

		Return a list of filters to use in the save file dialog.

		
setSaveFilters(filters)

		Set a list of filters to use in the save file dialog.

		
openFilters()

		Return a list of filters to use in the open file dialog.

		
setOpenFilters(filters)

		Set a list of filters to use in the open file dialog.

		
name()

		Return the name of the currently opened file.

This returns the name portion of the full path. If no named
file is opened, an empty string is returned. Note that
an empty return value does not mean that the document is empty; a
new one may be open which has not yet been saved.

		
fullName()

		Return the full name of the currently opened file.

		
path()

		Return the folder path to the currently opened file.

		
ext()

		Return the extension of the currently opened file.

		
isOpen()

		Return true if there is a currently open document.

		
saveDocument(path)

		Save a document to disk and return True success.

This method should be re-implemented by subclasses and should
perform the necessary operations to write the document data to
path. All GUI operations, such as querying the name are handled
prior to calling this function, but no checks are made as to
whether path exists or is accessible. It is recommended that
dtlibs.xos.safewriter() be used instead of open(),
since it handles failure and race conditions.

If the undo framework is used, then undo.Stack.savepoint should
be called here to set the savepoint.

The default implementation does nothing and returns True.

		
openDocument(path)

		Load a document into memory by name and return True for success.

This method should be re-implemented by subclasses and should
perform the necessary operations (i.e. opening the file,
locking it, etc) to load the document data from path. All
GUI operations, such as querying the name are handled
prior to calling this function, but no checks are made as to
whether path exists or is accessible.

The default implementation does nothing and returns True.

		
newDocument()

		Initialise a new, empty document and return True for success.

This method should be re-implemented by subclasses and should
perform the necessary operations to create new document data.
Before this is called, QXDocument ensures that there is no
open document, so document data can be assumed to be in the
default state, or as left by closeDocument().

The default implementation does nothing and returns True.

		
closeDocument()

		Close an open document and return True for success.

This method should be re-implemented by subclasses and should
perform the necessary operations to clear document data. Operations
such as saving the document are handled prior to calling this
function, so it can be assumed that it is safe to clear the data.

The default implementation does nothing and returns True.

		
new()

		Create a new document.

This method should be called by the GUI when a new document is
required. It checks if a document is already open, and if so gives
the option to save it and close it. It then calls newDocument
to do any initialisation needed. True [http://docs.python.org/3.2/library/constants.html#True] is returned on success.

		
open()

		Open an existing document.

This method should be called by the GUI to open an existing document.
It first checks if a document is already open, and if so gives
the option to save it and close it. It then uses QFileDialog
to get the filename of the document and calls openDocument to
open it. True [http://docs.python.org/3.2/library/constants.html#True] is returned on success.

		
save()

		Save an open document.

This method should be called by the GUI to save the current document.
If there is no open document, it does nothing and returns False [http://docs.python.org/3.2/library/constants.html#False].
If the current document has a name, it is saved silently, otherwise
saveAs is called. True [http://docs.python.org/3.2/library/constants.html#True] is returned on success.

		
saveAs()

		Save an open document under a new name.

This method should be called by the GUI to save the current document
with a new name. If there is no open document, it does nothing and
returns False. QFileDialog is used to get the new name, and
saveDocument is called to write it. True [http://docs.python.org/3.2/library/constants.html#True] is returned on success.

		
close()

		Close an open document.

This method should be called by the GUI to close the current document.
If there is no open document, it does nothing and returns False [http://docs.python.org/3.2/library/constants.html#False],
otherwise it asks whether to save it first, and if so calls save.
It then calls closeDocument to perform any closing actions
required. True [http://docs.python.org/3.2/library/constants.html#True] is returned on success.

QXDocumentWindow

		
class dtlibs.qt.QXDocumentWindow([document=None])

		This is a QMainWindow subclass designed specifically to integrate with
a QXDocument instance, and is often used as the main application
window.

Subclasses should reimplement openGUI and closeGUI to update the
interface with a document is opened or closed.

		
setDocument(document)

		Set the QXDocument instance handled by the window.

		
document()

		Return the QXDocument instance handled by the window.

		
openGUI()

		Called immediately after a document is sucessfully opened. This
should be reimplemented by subclasses. The default implementation
does nothing.

		
closeGUI()

		Called immediately after a document is sucessfully opened. This
should be reimplemented by subclasses. The default implementation
does nothing.

		
addSimpleDockWidget(title, widget)

		Add a QDockWidget with a single child widget. The new dock widget
is returned.

This method is the same as:

dock = QDockWidget(title)
dock.setObjectName(title)
dock.setWidget(widget)
mainwindow.addDockWidget(Qt.LeftDockWidgetArea, dock)

		
addToolBars(self, toolbars):

		Add all toolbars to the window. This can conveniently be called with
the output of QXActions.toolbars:

actions = QXActions(...)
actions.group(...)
self.addToolBars(actions.toolbars)

QXDropdownFilterModel

		
class dtlibs.qt.QXDropdownFilterModel(model[, column=0, role=Qt.DisplayRole])

		A list model presenting filter options based on another model.

This is a list model which shows a the unique values in a column
of another model. It also added a tristate “Select All” item, and
makes all other checkable. This would comonly be used as the model
of a combo or list widget to allow the user to filter out values
from the original model. By default, all items are selected and
any new ones added are automatically selected.

This is initialised from a parent model containing data in column
which is presented in the filter. role sets the ItemRole to
use for reading values.

When the filter changes, a filterChanged signal is emitted with a
set of unselected values.

		
filterChanged(values)

		This signal is emitted with a set of unselected values when
the filter changes

		
sourceDataChanged()

		This slot is connected to the source model’s dataChanged signal.

		
aboutToReset()

		Called before rows in the source model are added or removed.

		
reset()

		Called after rowas in the source model are added or removed.

		
sourceItems()

		Return a sorted list of unique items in the source model.

		
selectedState()

		Return the check state of the Select All option

QXField

		
class dtlibs.qt.QXField(name[, readonly, default, title, enum, calc, alignment])

		Control a column in a QXTabularModel.

The purpose of a field is to control how data is displayed, edited,
validated and stored for a single column in the table. Fields are
identified by a name. The name should be a valid python identifier,
and should be unique in the table. The field name is also used by
the parent model to look up values in the backend datastore.

QXField objects have several writable properties which define them,
all of which can be set as constructor keyword arguments.

		Property
		Default
		Notes

		readonly
		False
		

		default
		None
		

		alignment
		Left
		One of the Qt alignment flags, used for display.

		title
		name
		The value displayed in table headers

		enum
		None
		This may be set as either a list or callable
which returns a list. In both cases,
field.enum returns a list.

		calc
		None
		A callable which converts a returns the
calculated value in the field given a record.

For convenience, the following alignment flags are defined as class
attributes:

		
TopLeft

		

		
TopCenter

		

		
TopRight

		

		
Left

		

		
Center

		

		
Right

		

		
BottomLeft

		

		
BottomCenter

		

		
BottomRight

		

		
editFormat(value)

		Convert value to an editable format for this field.

value is the actual value. The default behaviour is to convert
value to a dtlibs.xcollections.SelectList if enum is not
None, or to return value unchanged.

		
displayFormat(value)

		Convert value to a display format for this field.

Numbers are not converted to strings. This is the responsibility
of the delegate.

		
valueFormat(editValue)

		Convert from edit format to stored format. Depending on the source
of editValue, it may be text regardless of the expected type.
This method should handle any type conversions necessary.

QXFloatDelegate

		
class dtlibs.qt.QXFloatDelegate(parent[, prefix='', decimals=None, suffix=''])

		A delegate for float values.

		Parameters:		
		prefix – A text prefix to add to numbers displayed, and strip
from numbers entered.

		decimals – The number of decimal places to use when displaying
the number. If omitted, then all decimals are shown.

		suffix – A text suffic to append to numbers displayed, and
strip from numbers entered.

For example:

>>> widget = QWidget()
>>> dg = QXFloatDelegate(widget, '$ ', 1, ' million')
>>> dg.displayText(12.345678, None)
'$ 12.3 million'

		
getWidget(parent, option, index)

		Return a QXStdFloatEdit with decimals set as in the constructor.

QXListDelegate

		
class dtlibs.qt.QXListDelegate(parent)

		A delegate for option lists.

When using this delegate, the model’s data method is expected to
return a SelectList object for EditRole and
a string for DisplayRole.

		
getWidget(parent, option, index)

		Return a QXStdOptionsBox.

QXSortFilterProxyModel

		
class dtlibs.qt.QXSortFilterProxyModel

		Applies per column filtering to QSortFilterProxyModel.

This behaves almost exactly the same as QSortFilterProxyModel,
but allows separate filters for each column. Also, the filters are
callables which take a value and return True (display) or False (hide).

		
setFilter(column, func[, role=Qt.DisplayRole])

		Assign a filter function to a column.

QXStdCheckBox

		
class dtlibs.qt.QXStdCheckBox([value=False, parent=None])

		A standard check box implementing QXStdWidgetABC

Inherits: QLineEdit

Datatype: bool [http://docs.python.org/3.2/library/functions.html#bool]

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue and
getValue and indicates that the check box is
partially checked.

QXStdComboBox

		
class dtlibs.qt.QXStdComboBox([value='', parent=None])

		An editable combo box implementing QXStdWidgetABC which reports on the
current text.

Inherits: QComboBox

Datatype: str [http://docs.python.org/3.2/library/functions.html#str]

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue
and is converted to an empty string. None [http://docs.python.org/3.2/library/constants.html#None] is returned by
getValue if no index is selected.

QXStdDateEdit

		
class dtlibs.qt.QXStdDateEdit([value=None, parent=None])

		A standard date edit widget implementing QXStdWidgetABC.

Inherits: QDateEdit

Datatype: datetime.date [http://docs.python.org/3.2/library/datetime.html#datetime.date]

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue and is
converted to the default date used by QDateEdit. None [http://docs.python.org/3.2/library/constants.html#None] is
never returned by getValue.

QXStdDateTimeEdit

		
class dtlibs.qt.QXStdDateTimeEdit([value=None, parent=None])

		
A standard date and time edit widget implementing QXStdWidgetABC.

Inherits: QDateTimeEdit

Datatype: datetime.datetime [http://docs.python.org/3.2/library/datetime.html#datetime.datetime]

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue
and is converted to the default value used by QDateTimeEdit. None [http://docs.python.org/3.2/library/constants.html#None]
is never returned by getValue.

QXStdFloatEdit

		
class dtlibs.qt.QXStdFloatEdit([value=None, parent=None, decimals=None])

		A standard line edit widget for floats implementing QXStdWidgetABC.

Inherits: QLineEdit

Datatype: float [http://docs.python.org/3.2/library/functions.html#float]

If given, decimals sets the number of decimals to round the value to.

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue
and is converted to an empty string. None [http://docs.python.org/3.2/library/constants.html#None] is returned by
getValue if the value cannot be converted to a float.

QXStdIntEdit

		
class dtlibs.qt.QXStdIntEdit([value=None, parent=None])

		A standard line edit widget for integers implementing QXStdWidgetABC

Inherits: QLineEdit

Datatype: int [http://docs.python.org/3.2/library/functions.html#int]

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue
and is converted to an empty string. None [http://docs.python.org/3.2/library/constants.html#None] is returned by
getValue if the value cannot be converted to an integer.

QXStdOptionsBox

		
class dtlibs.qt.QXStdOptionsBox([value=None, parent=None])

		A combo box which allows a single selection from a list of options.

Inherits QComboBox

Datatype: dtlibs.xcollections.SelectList

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue
and is converted to an empty SelectList. None [http://docs.python.org/3.2/library/constants.html#None]
is never returned by getValue. The
SelectList passed to setValue
is copied and the selected option tracked by index. This means that
non-string types in setValue will be returned by
getValue intact.

QXStdTextEdit

		
class dtlibs.qt.QXStdTextEdit([value='', parent=None])

		A standard line edit for strings implementing QXStdWidgetABC.

Inherits: QLineEdit

Datatype: str [http://docs.python.org/3.2/library/functions.html#str]

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue
and is converted to an empty string. None [http://docs.python.org/3.2/library/constants.html#None] is never returned by
getValue.

QXStdWidgetABC

		
class dtlibs.qt.QXStdWidgetABC

		Define the API of a standard editing widget.

Qt has many widgets which behave in a very similar manner, but have
slightly different APIs. An example is QLineEdit and QCheckBox. Both of
these represent a single piece of data and support read and write
operations. However, QLineEdit does this through text() and
setText() methods while QCheckBox uses checkState() and
setCheckState(). These method names are very descriptive, but
make generic programming for unknown widgets quite complicated.
dtlibs.qt solves this by providing subclasses of the regular
PyQt4 widgets with a defined API.

Each widget supports a specific set of types, defined by its types
class method. They may also handle and return None, which indicates an
invalid value. It is up to the subclass implementation to deal with
type checking and conversions. While all of these classes support
setting the value to None, they do not necessarily have to return
None. This behaviour depends on the specific class.

		
valueChanged

		This signal is emitted whenever the value changes. It is similar
to the textChanged signal in a QLineEdit.

		
emitValueChanged()

		Called by subclasses to raise the valueChanged signal.

		
getValue()

		Return the value of the widget. This is similar to QLineEdit.text.

		
setValue(value)

		Set the value of the widget. This is similar to QLineEdit.setText.

		
classmethod types()

		Return a list of types supported by the widget.

QXTableView

		
class dtlibs.qt.QXTableView([*proxies, parent=None])

		This is an extension to QTableView with the following changes:

		The default delegate is QXTypedDelegate.

		The default row height is 1.5 times the text height.

		selectionMode is set to ContiguousSelection.

		When editing on a cell is complete, the current cell moves down
one row.

In addition, the following new features are added:

		Hooks can be used to notify the model when it is applied to
the view. When a model is set, its setView method is called,
if it exists. Similarly, unsetView is called when the model
is removed from the view.

		Copy and paste support is provided by the view through copy,
and paste methods.

		A new signal, currentRowChanged is emitted by the view when the
row changes.

		The view can be pre-configured to use a list of proxy models,
specified in the order in which they should be applied. When
setModel is called, the proxies will be inserted in the order
they are given. For example, if the proxies are given as
(proxy1, proxy2) then setModel(model) results in the
following actions:

super().setModel(proxy1)
proxy1.setSourceModel(proxy2)
proxy2.setSourceModel(model)

Note that setView and unsetView will be called on the model
actually set to the view, i.e. the first proxy.

		
currentRowChanged(newIndex, oldIndex)

		This is emitted after the current row changes in the view.

		
copy()

		Copy the selected cells to the system clipboard.

		
copyRole()

		Return the ItemRole used in the model’s data method when
copying data.

		
nextCell()

		Move the current row to the next cell down if possible. Otherwise,
this does nothing.

		
paste([text])

		Paste tab-separated data into the table, overwriting existing.

The data is written to each cell using model().setData(), with the
role specified in pasteRole. Note that no data conversion is
done and all the data is pasted as text.

The exact operation of this depends on the selection: If a
range of cells is selected, then pasteToSelection is used.
If nothing is selected, pasteAll is used.

If text is not specified, the contents of the system clipboard
are used.

		
pasteAll(data)

		Paste data to the current index, filling down and right.

data is an iterable of rows, each row being an iterable of columns.
As much of the data is pasted as possible, filling down and right
from the current index. Pasting stops either when rows and columns
run out or when the data runs out. It is pasted a row at a time,
and a check is made after each row to determine if there is
space for more. This allows QXAppendProxyModel to be used to
append new rows.

		
pasteRole()

		Return the ItemRole used in the model’s setData method when
pasting data.

		
pasteToSelection(data)

		Paste data to overwrite the selected indexes.

data is an iterable of rows, each row being an iterable of columns.
The data is pasted to fill the selected range, repeating as necessary.
The selection is assumed to be contiguous between the smallest
and largest selected indexes.

		
restoreState(state)

		Restore the state of the view from state. This is typically
taken directly from QXApplication.restoreState.

		
saveState()

		Return the state of the object to save. This is typically passed
directly to QXApplication.saveState.

		
setColumnWidth(column, width)

		Sets the width of the given column to the width specified.

width may be a string, in which case the width set to the
width of the string painted in the QXTableView’s font.

		
setCopyRole(value)

		Set the ItemRole used in the model’s data method when
copying data.

		
setPasteRole(value)

		Set the ItemRole used in the model’s setData method when
pasting data.

		
setProxyModels(*models)

		Set proxy models which will be used in this view.

QXTabularModel

		
class dtlibs.qt.QXTabularModel(records)

		This model works on the principal that the table consists of records
and fields, where each record is an object representing a unit of
information and each field defines the type and representation of data
stored in it. Each record is a single python object, and the
default behaviour assumes that its field data are accessible using
attribute lookup on the field name. This can be overridden by
setting valueGetter. The simplest form of a record is a
nameddict, but is usually a custom
object of some sort.

Each column is represented by a QXField object defining how the
data should be handled. The field does not actually know anything
about the data itself.

When this model is instantiated, it is provided with a source of data
which is a mutable sequence containing individual records. Records
can be added to the model using addRecord or deleted using
deleteRow, and propagates to the underlying data source.

The data for the following example is stored as a list of named tuples.

>>> from dtlibs.xcollections import nameddict
>>> Record = nameddict('Record', 'id name age')
>>> data = [Record(id=1, name='Eric', age=43),
... Record(id=2, name='Matt', age=19)]

The first field (id)is readonly, and the last field (age)
should have a default of 0.

>>> fields = [QXField('id', readonly=True),
... QXField('name'),
... QXField('age', default=0)]

The model is then created using this information.

>>> model = QXTabularModel(data)
>>> model.setFields(fields)

Now we can check that the model does contain the data it was
initialised with.

>>> model.rowCount()
2
>>> model.columnCount()
3
>>> model.data(model.index(0, 1), Qt.DisplayRole)
'Eric'
>>> bool(Qt.ItemIsEditable & model.flags(model.index(0, 0)))
False

The age of Matt can be changed to 20, a new row can be added, and
the first row deleted.

>>> model.setValue(model.index(1, 2), 20)
>>> newindex = model.addRecord(Record(id=3, name='Peter', age=35))
>>> model.deleteRow(0)

The original data list will reflect these changes

>>> for row in data:
... print(row.id, row.name, row.age)
2 Matt 20
3 Peter 35

		
valueGetter()

		Return a callable which returns the value given a record object and
field name. By default it is getattr [http://docs.python.org/3.2/library/functions.html#getattr].

		
setValueGetter()

		Set a callable which returns the value given a record object and
field name.

		
pauseRowSignals()

		Return a context manager which suppresses all insert row signals.

		
setFields(fields)

		Set the fields to be displayed. fields must be a list of
instances of QXField objects.

		
fields()

		Return a tuple of the QXField objects displayed.

		
fieldnames()

		Return a tuple of the field names displayed.

		
field(column)

		Return the Field object for a column.

		
column(field)

		Return the number of the column containing field. field can
be either a field name or QXField instance.

		
record(row)

		Return the record at a row.

		
row(record)

		Return the number of the row containing record.

		
value(index)

		Return the actual value stored at index.

		
setValue(index, editValue):

		Set the value in the record at index. If the field is read-only
or the value is unchanged, then a ValueError is raised. If the
value is successfully changed, the dataChanged signal is emitted.

This method supports the undo framework.

		
addRecords(records)

		Append a list of record to the model.

The return value is the index of the first column in the first added
row. If the append fails, a ValueError is raised.

This method supports the undo framework.

		
addRecord(record)

		Append a record to the model.

The return value is the index of the first column in the added
row. If the append fails, a ValueError is raised. This should be
called within any subclass implementations,

This method supports the undo framework.

		
deleteRow(row)

		Remove a row by row number.

This method supports the undo framework.

QXTypedDelegate

		
class dtlibs.qt.QXTypedDelegate(parent)

		A delegate which handles various python types.

Subclasses should provide at least an implementation of getWidget,
which returns a new instance of a widget to use for editing. The
delegate removes the widget frame for better style consistency.

The default implementation allows the widget to be set by the model
using Qx.WidgetRole and falls back on guessing the widget based on
the data type returned by EditRole, using guessWidget. If the
data type is known, however, it is better to use one of the strictly
typed delegates, QXFloatDelegate, QXDateTimeDelegate or
QXListDelegate.

		
getWidget(parent, option, index)

		Return the widget to use for editing.

 © Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

qt/data.html

 Navigation

 		
 index

 		
 modules |

 		dtlibs 0.5.0pre documentation »

Data and Namespaces

		
dtlibs.qt.qobject_singleton

		A singleton metaclass based on dtlibs.core.singleton, which
works for classes inheriting from QObject (i.e. all PyQt4 classes).

		
class dtlibs.qt.Qx

		Qx namespace, extends constants from the Qt namespace.

		
WidgetRole

		Item role for determining the standard widget to use. Equal to
QtCore.Qt.UserRole + 1

 © Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

qt/overview.html

 Navigation

 		
 index

 		
 modules |

 		dtlibs 0.5.0pre documentation »

Overview

The dtlibs.qt module contains the following extensions to the PyQt4 framework.

		All objects in the QtCore and QtGui modules can be imported
from the dtlibs.qt, e.g.

>>> from dtlibs.qt import Qt, QRect, QWidget

		note:		Because of the size of PyQt4, it is recommended that
from dtlibs.qt import * is not used.

		The tango icon set is included as a compiled recource. It is also
separately available and as a qrc file for use in Designer.

		The Qt namespace is extended with dtlibs.qt.Qx.

		New frameworks

		New classes and functions

New frameworks

Decorator Actions

The normal method of creating and working with QAction is by creating
a new QAction instance with appropriate text, icon, tooltip, etc., and
connecting its triggered signal to a function. It is then added to the
GUI through a toolbar or menu. QXActions provides an alternative,
more concise method.

Defining Actions

QXActions is used by first defining the target function of actions
using dtlibs.core.info to assign action properties.
The following information may be set:

		text:

		Sets the action’s text property. This is the only argument which is
required.

		icon:

		Sets the action’s icon. This may be either a QIcon instance
or the name of a tango icon (which is then found using
tangoIcon.

		tooltip:

		The tooltip text. If this is not specified, then the function’s
docstring is used, or, if there is no docstring, the text property.

		shortcut:

		Set the shortcut key (or keys) to be used. This can be any value accepted
as a constructor argument by QKeySequence. It can also be a list
of such values, in which case multiple shortcut keys are assigned.

		context:

		Set the shortcut context. This is only used if shortcut is also
specified, and is Qt.QWidgetWithChildrenShortcut by default.

Creating Actions

A new dtlibs.qt.QXActions instance is created with a list of objects.
The first object in the argument list is the widget to use as the parent of
the generated QAction instances. All the remaining arguments
are scanned for available actions by searching for methods with
with __info__['text'].

Creating menus and toolbars

The next step is to group the actions into menu and toolbar groups using
the group method. The menubar
and toolbars methods create
and return a QMenuBar and list of QToolBars respectively. By default,
all actions are disabled, and are only enabled when they are added to a menu
or toolbar, or explicitly enabled.

Example

>>> from dtlibs.core import info
>>> class MyClass:
...
... @info(text='Add', shortcut='Ctrl+A')
... def add_items(self):
... self.append_new_data()
...
... @info(text='Delete')
... def delete_items(self):
... self.delete_all_items()

Two actions (“Add” and “Delete”) can be created from this:

>>> from dtlibs import qt
>>> parent = qt.QMainWindow()
>>> myclass = MyClass()
>>> actions = qt.QXActions(parent, myclass)
>>> actions.group('Data', ['Add', 'Delete'])
>>> isinstance(actions.menubar(), qt.QMenuBar)
True
>>> for toolbar in actions.toolbars():
... print(toolbar.objectName())
Data

Typical usage is in a QMainWindow which defines its own actions:

def __init__(self, parent):
 super().__init__(self, parent)
 actions = qt.QXActions(self)
 actions.group('File', ['New', 'Open'])
 self.setMenubar(actions.menuBar)
 [self.addToolbar(t) for t in actions.toolbars]

Document Management Framework

The document management framework consists of two classes which interact
closely: QXDocument and QXDocumentWindow.
Most of a progam’s functionality lies in the QXDocument
class, and QXDocumentWindow provides the GUI, similar to the
model/view pattern.

Standard Widgets

PyQt4 has many widgets which behave in a very similar manner, but have
slightly different APIs. An example is QLineEdit and QCheckBox. Both of
these represent a single piece of data and support read and write operators.
However, QLineEdit does this through text() and setText() methods
while QCheckBox uses checkState() and setCheckState(). These
method names are very descriptive, but make generic programming for unknown
widgets quite complicated. dtlibs.qt solves this by providing a
new set of widgets which are subclasses of the regular PyQt4 widgets
but which conform to the dtlibs.qt.QXStdWidgetABC API.

New functions and classes

		New convenience functions are available:

		error
		

		getOption
		

		getText
		

		guessWidget
		

		hideproxy
		

		message
		

		percentageBrush
		

		qobject_singleton
		

		question
		

		runApp
		

		setUi
		

		standardBrush
		

		tangoIcon
		

		Some new classes are provided. These all start with the prefix QX
to distinguish them from the PyQt4 classes:

		QXActions
		

		QXAppendProxyModel
		

		QXApplication
		

		QXDateTimeDelegate
		

		QXDocument
		

		QXDocumentWindow
		

		QXDropdownFilterModel
		

		QXField
		

		QXFloatDelegate
		

		QXListDelegate
		

		QXSortFilterProxyModel
		

		QXStdCheckBox
		

		QXStdComboBox
		

		QXStdDateEdit
		

		QXStdDateTimeEdit
		

		QXStdFloatEdit
		

		QXStdIntEdit
		

		QXStdOptionsBox
		

		QXStdTextEdit
		

		QXStdWidgetABC
		

		QXTableView
		

		QXTabularModel
		

 © Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

qt/functions.html

 Navigation

 		
 index

 		
 modules |

 		dtlibs 0.5.0pre documentation »

Functions

Dialog Functions

		
dtlibs.qt.question(prompt)

		Display a question dialog with Yes and No buttons. The return value
is True [http://docs.python.org/3.2/library/constants.html#True] if Yes was selected or False [http://docs.python.org/3.2/library/constants.html#False] if No was selected.

		
dtlibs.qt.message(prompt)

		Use a QMessageBox to display an information message.

		
dtlibs.qt.error(prompt)

		Use a QMessageBox to display an error message.

		
dtlibs.qt.getText(prompt[, default='', validate=None, handle_invalid='confirm'])

		Requests a text string through a gui prompt.

		Parameters:		
		prompt – Prompt text to display.

		default – Default value in the entry widget.

		validate – A function which accepts a single argument and
returns True [http://docs.python.org/3.2/library/constants.html#True] or False [http://docs.python.org/3.2/library/constants.html#False].

		handle_invalid – Control how an invalid entry is handled.

		Returns:		The value entered, or None [http://docs.python.org/3.2/library/constants.html#None] if the request was
cancelled.

handle_invalid can be any one of the following strings

		Value
		Description

		‘confirm’
		A confirmation dialog is displayed, asking whether to
accept.

		‘warn_accept’
		A warning dialog is displayed and the value is accepted.

		‘warn_deny’
		A warning dialog is displayed and the value can be
re-entered.

		‘cancel’
		Nothing is displayed or accepted.

		
dtlibs.qt.getOption(prompt, options[, current=0])

		Display a dropdown list of options.

		Parameters:		
		prompt – Prompt text to display.

		options – A list of strings.

		current – The initially selected index.

		Returns:		The newly selected index

General UI functions

		
dtlibs.qt.setUi(uifile[, obj=None])

		Load the .ui file and set it up for the obj instance.

		Parameters:		
		uifile – The relative filename of the ui file to load.

		obj – A QWidget subclass instance

If the ui file references tango_icons.qrc, then references are
updated so that it will be found, regardless of its relative position.

		
dtlibs.qt.tangoIcon(name)

		Return an icon from the Tango icon set.

name follows the freedesktop.org Icon Naming Standards [http://www.freedesktop.org]. For example, 'actions/document-new'.

		
dtlibs.qt.standardBrush(color_role)

		Return a brush for a Qt standard color role.

		
dtlibs.qt.percentageBrush(percentage[, colour=QtCore.Qt.red])

		Return a brush with colour faded by percentage. A percentage of 0% has
no effect on the colour, and a percentage of 100% results in white.

Application

		
dtlibs.qt.runApp(mainWindow, name)

		Creates a new application and runs it, setting the main window and name.
This also sets the locale to the current system locale.

Example usage is:

from gui import MainWindow

if __name__== '__main':
 runApp(MainWindow, 'My Application')

Once the application created has been terminated, runApp calls
sys.exit [http://docs.python.org/3.2/library/sys.html#sys.exit], so this should be the final command to be run.

mainWindow can be either a QWidget instance or subclass. If it is
a subclass, then an instance is created.

This is implemented by calling the following:

locale.setLocal(locale.LC_ALL, '')
QXApplication()
win = mainWindow()
QXApplication.setApplicationName(name)
QXApplication.setMainWindow(win)
win.setWindowTitle(name)
win.show()
sys.exit(QXApplication.exec_())

Utility Functions

		
@dtlibs.qt.hideproxy

		This class decorator handles method calls by searching recursively
through source models until it finds a matching method, which it uses
instead. The following example illustrates usage on a custom model:

@hideproxy
class SortModel(QSortFilterProxyModel):
 ...

datamodel = QStandardItemModel()
sortmodel = SortModel()
sortmodel.setSourceModel(datamodel)

This makes the following two calls identical:

item = sortmodel.itemFromIndex(proxyindex)
item = sortmodel.sourceModel().itemFromIndex(sortmodel.mapToSource(proxyindex))

Arguments and return values may be converted if required, e.g. mapping
of model indexes. The conversions used are based on annotations in the
source model, which should be one of 'row', 'column' or
'index'. The conversions are done by methods in the proxy model
mapRowFromSource, mapColumnFromSource, mapFromSource
and the corresponding ToSource methods. mapToSource and
mapFromSource are defined by PyQt4. If any of the others are not defined
by the model then they are dynamically created.

		
dtlibs.qt.textHeight(widget[, text])

		Return the height of text painted by widget. If text is omitted,
then the height of a single character is returned.

		
dtlibs.qt.textWidth(widget[, text])

		Return the width of text painted by widget. If text is omitted,
the average character width is returned.

		
dtlibs.qt.compactSeparators(toolbar)

		Remove adjacent separators in a QTooBar instance.

		
dtlibs.qt.menuToToolBar(menu[, toolbar]) → toolbar:

		Add all actions in a QMenu to a QTooBar.

If toolbar is missing a new QToolBar is created, otherwise toolbar
is updated. In either case, the toolbar is returned.

Actions are added in the same order as they were to the QMenu
instance. Separators are added to correspond to those in the
menu, and submenus are also added to one level, surrounded
by separators. Further submenus are added as dropdown menus.

		
dtlibs.qt.guessWidget(value)

		Attempt to guess which widget to provide based on a value.

The return value is a class which implementes QXStdWidgetABC.
value is the value the widget should work with. If no suitable widget
is found, QXStdTextEdit is returned.

 © Copyright 2011, David Townshend.
 Created using Sphinx 1.2.2.

